

### **Problem Set 18: Critical Values and Particle Motion**

Find the critical points of the function (just the x-values).

1. 
$$y = -4t^2 + 8t - 4$$
  
 $y' = -8t + 8 = 0$   
 $8t = 8$   
 $t = 1$ 

2. 
$$y = 3x(x-1) = 3x^{2} - 3x$$
  
 $y' = 6x - 3 = 0$   
 $6x = 3$   
 $x = \frac{3}{6} = (\frac{1}{2})$ 

3. 
$$f(x) = -5\sqrt{5-x} = -5\left(5-x\right)^{1/2}$$
4.  $h(x) = \frac{x^2 + 2}{4x + 2} =$ 



- 5. The position of a particle along the y-axis for any time t can be represented by the equation  $g(t) = t^4 4t^3 + 10$ .
  - a) What is the velocity of the particle at time t = 2?

velocity = 
$$g'(t) = 4t^3 - 12t^2$$
 =  $4(8) - 12(4)$   
 $g'(2) = 4(2)^3 - 12(2)^2$  =  $32 - 48$   
=  $(-16)$ 

b) What is the acceleration of the particle at time t = 2?

acceleration = 
$$g''(t) = 12t^2 - 24t$$
  

$$g''(2) = 12(2)^2 - 24(2)$$

$$= 12(4) - 48$$

c) When does the particle stop?

Particle stop => velocity is zero => 
$$g'(t) = 0$$
  
 $g'(t) = 4t^3 - 12t^2 = 0$   $4t^2 = 0$   $t - 3 = 0$   
 $4t^2(t - 3) = 0$   $t = 0$   $t = 3$ 

d) When does the particle turn around?



- 6. A particle moves along the x-axis so that at time  $t \ge 0$  the position of the particle is  $x(t) = t \cdot ln \ t$ 
  - a) What is the velocity of the particle at time t = 1?

$$x'(t) = t(\frac{1}{t}) + \ln(t) \cdot (1) \in \text{froduct Rule}$$
  
 $x'(1) = 1(\frac{1}{t}) + \ln(1) = 1 + 0 = (1)$ 

b) What is the acceleration of the particle at time t = 1?

$$x'(t) = 1 + \ln(t)$$
  
 $x''(t) = \frac{1}{t}$   $x''(1) = \frac{1}{t} = 1$ 

c) When does the particle stop?

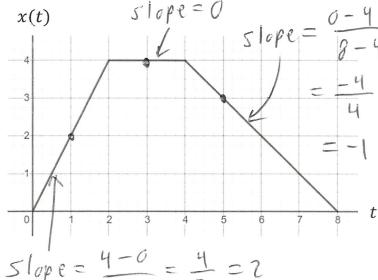
$$x'(t) = |+|n(t)| = 0$$

$$e^{|n(t)| = -1}$$

$$e^{|t| = e^{-1}} = (-1)$$

d) When does the particle turn around?

Sign change 
$$x''(t) = 1 + \ln(t)$$
  
 $\frac{1}{e}$   
 $x''(t) = 1 + \ln(t)$   
 $x''(t) = 1 + \ln(t)$ 




- 7. The position vs. time graph of a particle is shown. The position is measured in meters and the time is measured in seconds.
  - a) What is the position of the particle at 1, 3, and 5 seconds?

$$t=1 \Rightarrow x(1)=2$$
  
 $t=3 \Rightarrow x(3)=4$   
 $t=5 \Rightarrow x(5)=3$ 

Meters

b) What is the velocity of the particle at 1, 3, and 5 seconds?



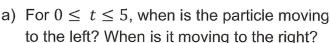
$$5lope = \frac{4-0}{2-0} = \frac{4}{2} = 2$$

velocity at 
$$t=1$$
 is 2  
 $t=3$  is 0  
 $t=5$  is  $-1$ 

meters per second

c) When is the particle at rest?

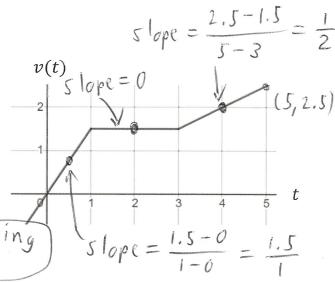
rest = ) velocity is zero = ) slope is zero




d) When is the particle moving to the right?

moving right => velocity >0 => positive slope




8. The velocity vs. time graph of a particle is shown. The velocity is measured in m/s and the time is measured in seconds.



Moving left => velocity <0

The velocity is always >0

between t=0 and t=5



moving right on [0,5] (never moving left

b) When is the particle at rest?

at rest = Velocity = 0

c) What is the particle's acceleration at  $t = \frac{1}{2}$ , t = 2, and t = 4?

acceleration = slope

acceleration at 
$$t=\frac{1}{2}$$
 is 1.5  
 $t=2$  is 0

 $m/s^2$ 
 $t=4$  is  $\frac{1}{2}$